Combining Molecular Docking and Molecular Dynamics to Predict the Binding Modes of Flavonoid Derivatives with the Neuraminidase of the 2009 H1N1 Influenza A Virus
نویسندگان
چکیده
Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R(2) = 0.75.
منابع مشابه
Molecular Characterization and Phylogenetic Analysis of Neuraminidase Gene in A/H1N1 Influenza Virus Isolates Circulating in Iran, 2014-2015.
Objectives: Influenza is one of the most important emerging and reemerging infectious diseases in the world. The aim of this study is molecular and phylogenetic analyses of the variations in circulating influenza A/H1N1 virus isolates during 2014-2015 in Iran and investigate on the drug resistance conditions in the related Iranian isolates. Material and Methods: Throat samples from Iranian pat...
متن کاملStructure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies
The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...
متن کاملStructure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies
The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...
متن کاملBaculoviral Expression of Influenza A Virus (H1N1 New Caledonia) Neuraminidase in Insect Cells
Background and Aims: Each year, the influenza virus causes moderate to severe infections with a high prevalence throughout the world. Accordingly, an influenza vaccine that ensures protection with only a single dose would be a much more cost effective approach to influenza prophylaxis. Generation of Influenza non-replicating virus-like particles (VLP) in baculoviral expression system is an attr...
متن کاملMolecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کامل